Evolutionary Multi-objective Optimization of Spiking Neural Networks
نویسندگان
چکیده
Evolutionary multi-objective optimization of spiking neural networks for solving classification problems is studied in this paper. By means of a Paretobased multi-objective genetic algorithm, we are able to optimize both classification performance and connectivity of spiking neural networks with the latency coding. During optimization, the connectivity between two neurons, i.e., whether two neurons are connected, and if connected, both weight and delay between the two neurons, are evolved. We minimize the the classification error in percentage or the root mean square error for optimizing performance, and minimize the number of connections or the sum of delays for connectivity to investigate the influence of the objectives on the performance and connectivity of spiking neural networks. Simulation results on two benchmarks show that Pareto-based evolutionary optimization of spiking neural networks is able to offer a deeper insight into the properties of the spiking neural networks and the problem at hand.
منابع مشابه
Using Neural Networks and Genetic Algorithms for Modelling and Multi-objective Optimal Heat Exchange through a Tube Bank
In this study, by using a multi-objective optimization technique, the optimal design points of forced convective heat transfer in tubular arrangements were predicted upon the size, pitch and geometric configurations of a tube bank. In this way, the main concern of the study is focused on calculating the most favorable geometric characters which may gain to a maximum heat exchange as well as a m...
متن کاملApplying evolutionary optimization on the airfoil design
In this paper, lift and drag coefficients were numerically investigated using NUMECA software in a set of 4-digit NACA airfoils. Two metamodels based on the evolved group method of data handling (GMDH) type neural networks were then obtained for modeling both lift coefficient (CL) and drag coefficient (CD) with respect to the geometrical design parameters. After using such obtained polynomial n...
متن کاملArtificial Neural Network Based Multi-Objective Evolutionary Optimization of a Heavy-Duty Diesel Engine
In this study the performance and emissions characteristics of a heavy-duty, direct injection, Compression ignition (CI) engine which is specialized in agriculture, have been investigated experimentally. For this aim, the influence of injection timing, load, engine speed on power, brake specific fuel consumption (BSFC), peak pressure (PP), nitrogen oxides (NOx), carbon dioxide (CO2), Carbon mon...
متن کاملModeling and Multi-Objective Optimization of Stall Control on NACA0015 Airfoil with a Synthetic Jet using GMDH Type Neural Networks and Genetic Algorithms
This study concerns numerical simulation, modeling and optimization of aerodynamic stall control using a synthetic jet actuator. Thenumerical simulation was carried out by a large-eddy simulation that employs a RNG-based model as the subgrid-scale model. The flow around a NACA0015 airfoil, including a synthetic jet located at 10 % of the chord, is studied under Reynolds number Re = 12.7 × 106 a...
متن کاملDetermining Cluster-Heads in Mobile Ad-Hoc Networks Using Multi-Objective Evolutionary based Algorithm
A mobile ad-hoc network (MANET), a set of wirelessly connected sensor nodes, is a dynamic system that executes hop-by-hop routing independently with no external help of any infrastructure. Proper selection of cluster heads can increase the life time of the Ad-hoc network by decreasing the energy consumption. Although different methods have been successfully proposed by researchers to tackle...
متن کامل